

Xanthine, Uric Acid & Hypoxanthine Analyzed with LCMS - AppNote

Separation of Biomarkers found in Human Fluids

A simple Method was developed for the determination of Xanthine (X), Uric Acid (UA), and Hypoxanthine (HX) at concentrations in human urine (can be used for human serum) to support pharmacodynamic (PD) studies of a novel Xanthine Oxidase inhibitor during its clinical development.

PD Biomarkers (UA, X, and HX) were well separated from each other. In addition Xanthine was separated from two isobaric unknowns (unknown A and B) present in this particular urine sample. Current HPLC Methods for UA / X / HX measurements suffer from low Sensitivity, poor Selectivity, and/or inefficient sample throughput. The developed method is Fast and Sensitive and it will allow high sample throughput.

Peaks:

- 1. Xanthine (X) 153.04070 m/z
- Uric Acid (UA) 169.03560 m/z
 Unknown A 153.06080 m/z
- 3. Hypoxanthine (HX) 137.04580 m/z
 Unknown B 153.06606 m/z

Method Conditions

Column: Cogent Diamond Hydride™, 4µm, 100Å

Catalog No.: <u>70000-10P-2</u> **Dimensions:** 2.1 x 100mm

Mobile Phase:

A: DI Water / 0.1% Formic Acid B: Acetonitrile / 0.1% Formic Acid

Gradient:

Time (minutes)	%B
0	95
0.2	95
8	80
9	80
10	50
12	50

Post Time: 5 minutes **Flow rate:** 0.4mL / minute

Detection: ESI – pos - Agilent 6210 MSD TOF Mass Spectrometer.

Sample Preparation: 400μ L of Acetonitrile was added to 100μ L of human urine and sample was centrifuged (3000 g). Next, 20μ L of the supernatant was mixed with 10μ L of the 50:50 Acetonitrile / DI

Water / 0.1% Formic Acid

Notes: Xanthine Oxidase, an enzyme which catalyzes the oxidation of Hypoxanthine (HX) to Xanthine (X) to Uric Acid (UA) can be inhibited by allopurinol and other drugs. Uric acid lowering drugs are used in the treatment of gout and the prevention of tumor lysis syndrome. High concentrations of UA in blood (hyperuricemia) cause deposition of urate crystals, which could ultimately result in chronic joint inflammation and renal impairment. The determination of UA has been one of the tests in the clinical chemistry laboratory performed for patient diagnosis of gout.

Attachment

No 96 Xanthine, Uric acid & Hypoxanthine Analyzed with LCMS pdf 0.2 Mb Download File

Printed from the Chrom Resource Center
Copyright 2025, All Rights Apply
MicroSolv Technology Corporation
9158 Industrial Blvd. NE, Leland, NC 28451

Tel: (732) 380-8900 Fax: (910) 769-9435

Email: customers@mtc-usa.com

Website: www.mtc-usa.com