

Calculate the ligand density of a bonded phase of an HPLC column - How To

The ligand density can be calculated using the Berendsen-de Galan equation:

$$\alpha = 10^6 \% C/(10^2 \text{ MW}_{carbon} nC - \% C MW_{ligand}) SBET$$

where α is the ligand density (μ mol/ m^2), %C is the percent carbon (%), MW $_{carbon}$ is the molecular weight of carbon (g/mol), nC is the number of carbon atoms per bonded ligand, MW $_{ligand}$ is the molecular weight of the organic bonded ligand (g/mol), and SBET is the specific surface area of silica material (m^2 /g).

For example, the ligand density of the Cogent UDC-Cholesterol^m stationary phase comes out to approximately 1.5 μ mol/m² using this equation.

Printed from the Chrom Resource Center Copyright 2025, All Rights Apply **MicroSolv Technology Corporation** 9158 Industrial Blvd. NE, Leland, NC 28451 Tel: (732) 380-8900

Fax: (910) 769-9435

Email: customers@mtc-usa.com

Website: www.mtc-usa.com