

Know when to discard an outlier data point in HPLC by using the Q Test – How To $\,$

For example, if you prepare six replicate samples and obtain the following peak areas for your analyte:

106.5 104.2 103.7 107.1 99.2 104.7

The values are fairly close together, but what about 99.2? Should this data point be rejected or kept? i.e. Is it a legitimate data point or an outlier? To answer this, we use a test to determine — at a defined confidence limit — the reliability of the data point, known as the **Q Test**.

We need to compute two values, $Q_{calculated}$ and Q_{table} . $Q_{calculated}$ is obtained as follows: $Q_{calculated} = gap / range$

...where *gap* is the absolute difference between the suspect data point and its nearest neighbor and *range* is the difference between the highest and lowest values in the data set.

$$gap = 103.7 - 99.2 = 4.5$$

 $range = 107.1 - 99.2 = 7.9$
 $Q_{calculated} = 4.5 / 7.9 = 0.57$

To find Q_{table} , we look it up in the following table:

Number of values:	3	4	5	6	7	8	9	10
Q _{90%} :	0.941	0.77	0.64	0.56	0.507	0.468	0.437	0.412
Q _{95%} :	0.97	0.83	0.71	0.625	0.568	0.526	0.493	0.466
Q _{99%} :	0.994	0.93	0.82	0.74	0.68	0.634	0.598	0.568

We have 6 data points, so at the 95% confidence level, $Q_{table} = 0.625$. The criteria for acceptance or rejection are as follows:

Printed from the Chrom Resource Center

If $Q_{calculated} < Q_{table}$, accept the data point $\mathbf{MicroSolv}$ $\mathbf{Technology}$ $\mathbf{Corporation}$

If $Q_{calculated} > Q_{table}$, reject the data policy8 Industrial Blvd. NE, Leland, NC 28451

tel. (732) 380-8900, fax (910) 769-9435

Since 0.57 < 0.625, the data point can be kept with confidence.

Email: customers@mtc-usa.com Website: www.mtc-usa.com

Date: 07-22-2024