

How do I calculate plug length in Capillary Electrophoresis?

One possible way is to use the "Poiseuille equation" to calculate the plug length:

$$V = (\Delta P d^4 \pi t)/(128 \eta L)$$

where V is volume of the injected plug, ΔP is pressure drop down the length of the capillary (pascals), d is the inside diameter (m), η is the fluid viscosity (Pascal-sec), t is time the pressure is applied (sec), and t is the length of the capillary (m). Here you solve for V to get the injected plug volume. From there, you simply use the cylinder volume equation to convert volume to length of the plug:

$$V = \pi r^{2} L_{plug}$$

$$L_{plug} = (V / (\pi r^{2}))$$

$$L_{plug} = (V / (\pi (d/2)^{2}))0$$

where r is the inside radius and L_{plug} is the length of the plug.