

Hesperidin Analyzed with HPLC - AppNote

LC-MS compatible method

This method for analysis of Hesperidin produces an excellent analyte peak and shows separation from what appears to be two impurity peaks. The gradient method is LC-MS compatible and can be applied to many types of Hesperidin-containing samples such as citrus fruit extracts. The overlay of five runs shown in the figure illustrates the run-to-run reproducibility of the data.

Peak:

Hesperidin

Method Conditions

Column: Cogent Bidentate C18 2.o, 2.2µm, 120Å

Catalog No.: 40218-05P-2 **Dimensions:** 2.1 x 50 mm

Mobile Phase:

A: DI Water / 0.1% Formic Acid (v/v)
B: Acetonitrile / 0.1% Formic Acid (v/v)

Gradient:

Time (minutes)

%B

0	10
1	10
9	70
10	10

Post Time: 5 minutes Injection vol.: 1µL

Flow rate: 0.3mL/minute **Detection:** UV @ 285nm

Sample: 100 ppm Hesperidin reference standard in 1:1 DMSO: Methanol diluent

to: 0.6 minutes

Note: Hesperidin is a naturally occurring glycoside polyphenol that is thought to have antioxidant properties. Studies suggest it may have a number of pharmaceutical applications due to possible anti-inflammatory, anti-cancer, and cholesterol and blood pressure lowering effects. Its name comes from the word "hesperidium", which is the type of fruit produced by citrus trees.

Attachment

No 289 Hesperidin Analyzed by HPLC pdf 0.3 Mb Download File