
MICROS

Separation of Inosine Nucleotides - AppNote

IMP, IDP, and ITP Analyzed by HPLC

The figure shows the optimized separation of ITP (Inosine 5'-monophosphate), IDP (Inosine 5'-diphosphate) and IMP (Inosine 5'-triphosphate) in the order of increasing Phosphate content similar to anion exchange. The presence of at least one impurity near ITP and possibly a second near IMP precluded accurate determination of peak symmetry.

Peaks:

1. IMP – Inosine 5'-monophosphate

- 2. IDP Inosine 5'-diphosphate
- 3. ITP Inosine 5'-triphosphate

Method Conditions

Column: Cogent UDA[™], 4µm, 100Å Catalog No.: 40031-05P-2 Dimensions: 2.1 x 50mm Mobile Phase: A: DI Water / 16.0mM Ammonium Formate

B: 90% Acetonitrile / 10% DI Water / 16.0mM Ammonium Acetate

Gradient:

Time (minutes)	%B
0	100
1.5	100
13	30
20	30
20.1	100

Temperature: 25°C

Post Time: 3 minutes

Injection vol.: 1 µL

Flow rate: 0.4mL / minute

Detection: UV @ 254nm

Sample Preparation: Stock Solution: 1mg / mL solutions in DI Water. Samples were diluted 1:10 into 50% Acetonitrile / 50% DI Water mixture. Before injection, samples were filtered through a 0.45µm Nylon Syringe Filter (MicroSolv Tech Corp).

to: 0.7 minutes

Note: Deficiency of the enzyme ITP Pyrophosphohydrolase is a common genetic defect in human populations and has aroused recent interest for its putative pharmacogenetic relevance to Thiopurine therapy. The enzyme is part of a nucleotide ''futile cycle'', which converts IMP to IDP and ITP then back to IMP.

Attachment

No 261 Separation of Inosine Nucleotides pdf 0.2 Mb Download File

Printed from the Chrom Resource Center **MicroSolv Technology Corporation** 9158 Industrial Blvd. NE, Leland, NC 28451 tel. (732) 380-8900, fax (910) 769-9435 Email: customers@mtc-usa.com Website: www.mtc-usa.com Date: 02-05-2024